Home Ad Exchange News Google Leans On Machine Learning And Scale For Smarter Display Ads

Google Leans On Machine Learning And Scale For Smarter Display Ads

SHARE:

Google rolled out a machine learning-powered display product called Smart display campaigns on Thursday. The product is now generally available to all advertisers buying native, image or text ads across the Google Display Network (GDN).

Smart display campaigns are accessible via AdWords and reach more than 3 million GDN sites and apps on GDN now.

Beta testers like hotel search platform trivago have seen conversions increase an average of 20% across the board compared to standard display campaigns priced at the same CPA.

In its Smart display campaigns, which increased conversions 36%, trivago uploaded creative targeting different demos, set its price, budget and bid goals, and then Smart Display automatically generated 25,000 custom ads catering to the needs of different consumer targets.

Google claims Smart display uses machine learning to improve ad decisioning. While that capability isn’t new, Google argues it differentiates with pure scale.

“The opportunity here is to personalize ads based on what a user has previously done and deliver them in real time,” said Brad Bender, VP of product management for Google. “We update AdWords audiences in real time so when a consumer hits mute on an ad, for instance, we learn what they don’t like automatically and feed that into our machine learning.”

Within GDN, millions of signals make up each targeting and bid decision, so machine learning is vital for Google to wrangle it all. 

Although Google leveraged large-scale machine learning for certain products like Automated Insights, that was largely limited to analytics.

“We heard from advertisers that they wanted it to be easier to sort through multiple targeting options, create multiple versions of their ad or do complex calculations to figure out what right bid to set,” Bender said. “Over time, we’d developed a number of tools to make this easier, like auto-adapting a creative to fit every screen size or applied machine learning to automate bidding.”

But Google’s goal is to bring these media and creative capabilities together in a single workflow while ramping up its use of machine learning in ads.

“Machine learning and artificial intelligence are really at the heart of what we’re doing at Google, which you’re seeing play out in analytics, Google Assistant, Maps, and it’s certainly relevant for ads, too,” Bender said.

Subscribe

AdExchanger Daily

Get our editors’ roundup delivered to your inbox every weekday.

Google said that AI concepts like machine learning are part of its entire organization’s ethos.

Google AI initiatives include projects like DeepMind, Alpha Go and A.I. Experiments, its open-source library for machine-learning applications.

“If there’s a model that gets built in another part of the business, we’re able to bring it in and see how it does in our organization since we have a back end that allows us to test different models,” Bender said.

Easier said than done, but from an advertiser’s perspective, Google’s goal is to strike a balance between  simplicity and performance.

“They just log in, upload their assets and set their campaign parameters,” Bender said, “and we make the determinations to help them get to the outcomes they want.”

Must Read

CleanTap Says It Easily Fooled Programmatic Tech With Spoofed CTV Devices

CleanTap claims that 100% of the invalid traffic it spoofed was accepted into live auctions run by programmatic platforms and was successfully bid on by advertisers.

HUMAN Expands Its IVT Detection Tool Kit With A New Product For Advertisers, Not Platforms

HUMAN has recently started complementing its bid request analysis by analyzing the time between when a bot clicks an ad and when the landing page loads. Now it’s offering the solution to individual advertisers.

Index Exchange Launches A Data Marketplace For Sell-Side Curation

Through Index Exchange’s data vendor marketplace, curators gain access to third-party data sets without needing their own integrations.

Privacy! Commerce! Connected TV! Read all about it. Subscribe to AdExchanger Newsletters

Can Publishers Trust The Trade Desk’s New Wrapper?

TTD says OpenAds is not just a reaction to Prebid’s TID change, but a new model for fairer, more transparent ad auctions. So what does the DSP need to do to get publishers to adopt its new auction wrapper?

Scott Spencer’s New Startup Wants To Help Users Monetize Their Online Advertising Data

What happens when an ad tech developer partners with a cybersecurity expert to start a new company? You end up with a consumer product that is both a privacy software service and a programmatic advertising ID.

Former FTC commissioner Alvaro Bedoya speaks to AdExchanger Managing Editor Allison Schiff at Programmatic IO NY 2025.

Advertisers Probably Shouldn’t Target Teens At All, Cautions Former FTC Commissioner

Alvaro Bedoya shared his qualms with digital advertising’s more controversial targeting tactics and how kids use gen AI and social media.