Home Data-Driven Thinking The ‘Who’ And ‘How’ Behind Data-Driven Decision-Making

The ‘Who’ And ‘How’ Behind Data-Driven Decision-Making

SHARE:

Data-Driven Thinking” is written by members of the media community and contains fresh ideas on the digital revolution in media.

Today’s column is written by Milen Mahadevan, chief operating officer at 84.51°.

As the explosion of data grows, many are consumed with questions of data quality, connectedness and infrastructure, not to mention what to do with it and how to apply analytics, machine learning or artificial intelligence to make sense of it all.

There are two areas that are critical: who (the talent) and how (the principles for getting the most out of the data).

Yes, data is super important, as is the technology to manage it, but without the talent or right way of using data and analytics, data will never be the game changer many predicted it to be.

Not Enough Data Scientists Or Data Engineers

There has been significant media coverage over the last few years around the shortage of data engineers, data scientists and data-driven decision-makers.

It is likely that you are in a position where you do not have enough talent in your business for your aspirations. You aren’t going to find a silver bullet here for solving that; it’s tough, the market is harder than ever before and will only get more difficult as many more companies find the advantage of using data. Just like evaluating data sources or technologies is not a numbers game, it is about fit, uniqueness and quality. You need to pay as much attention to the talent you are bringing in and the team you are building as the purchase orders you are signing.

Data science and data engineering roles are generally broad and dynamic. Since the technologies change and the expertise needed shifts, you are seeking talent that is flexible and shows the ability to grow, learn and acquire new skills. I wish there was predictability in where really good high-quality talent comes from, but I have found it comes from everywhere and a variety of different backgrounds.

Don’t allow expectations of a specific background to drive decisions. Look for people who have a foundation of knowledge, even in different fields, and bring a diversity of thinking to the table. As you build that team, keep growing the problems that they take on, make them more and more challenging and show the team how they are making a difference to the business so they can see the impact.

As The Saying Goes, Culture Eats Strategy For Breakfast

Subscribe

AdExchanger Daily

Get our editors’ roundup delivered to your inbox every weekday.

Many companies have developed analytics or engineering teams to unlock the power of data insights and data-driven decision-making, yet many are not seeing the impact. The organization may not be ready or mature enough or management doesn’t like the answers. The team can end up in a loop, either miracle hunting or just creating reports because they can’t push past through the barriers.

This is a critical part of the leadership role; to drive a culture change, the foundation must be prepared. Companies can invest in data, technology and talent, but if they don’t invest in developing the culture of the organization and driving decisions through data, they will struggle.

Data and analytics should be a strategy for the organization, and it needs to start at the top. Leaders should use simple examples to show how decisions could have been different with the use of data and test markets or segments to show the continuous improvement that is possible. They must take senior management on the journey.

In parallel, leaders must also instill a culture within data teams that leverages data toward results and value creation, continuous learning and collaboration. Since success comes from working across the organization and no single team can make it happen, business alignment is needed.

Data, technology, talent and process are all important, but the last two are not heavily weighted enough in many companies. If you want to make data a competitive advantage, it isn’t about the data but what you do with it. The “who” and “how” become the critical questions to answer.

Follow 84.51° (@8451group) and AdExchanger (@adexchanger) on Twitter.

Must Read

Integral Ad Science Goes Big On Social Media As Retail Ad Spend Softens In Q3

Integral Ad Science shares dropped more than 10% on Wednesday, after the company reported lackluster revenue growth and softened its guidance for the Q4 season.

Comic: Gen AI Pumpkin Carving Contest

Meet Evertune, A Gen-AI Analytics Startup Founded By Trade Desk Vets

Meet Evertune AI, a startup that helps advertisers understand how their brands and products appear in generative AI search responses.

Private Equity Firm Buys Alliant As The Centerpiece To Its Platform Dreams

The deal is a “platform investment,” in which Inverness Graham sees Alliant as a foundation to build on, potentially through further acquisitions.

Privacy! Commerce! Connected TV! Read all about it. Subscribe to AdExchanger Newsletters

Even Sony Needed Guidance For Its First In-Game Ad Campaign

In-game advertising is uncharted territory even for brands like Sony Electronics that consumers associate with gaming.

Comic: Always Be Paddling

The Trade Desk Maintains Its High Growth Rate And Touts New Channels

“It’s hard not to be bullish about CTV when it’s both our largest channel and our fastest growing,” said The Trade Desk Founder and CEO Green during the company’s earnings report on Thursday.

After The Election, News Corp Has Harsh Words For Advertisers Who Avoided News

News Corp’s chief exec blasted “the blatant biases of ad agencies and ad associations,” which are “boycotting certain media properties” due to “personal political prejudices.”