Home Data-Driven Thinking Bidding Farewell To The Audience

Bidding Farewell To The Audience

SHARE:

Data-Driven Thinking” is written by members of the media community and contains fresh ideas on the digital revolution in media.

Today’s column is written by Dillon Roulet, founder and CEO at Syndic8.

Advertising without an audience sounds like an oxymoron, but it’s a reality that’s destined to take hold sooner, rather than later.

When programmatic came along, it upended the entire foundation on which digital advertising was created. In the old days, having a solid digital strategy meant buying impressions in bulk to cast a large net across the web. Targeting was limited (at best) and personalization was trivial.

Times have changed, with advertisers shifting more and more of their spend into programmatic. And while personalization has only just begun to come to fruition, just as we no longer buy impressions in bulk, we won’t always buy audience segments en masse.

Instead, utilities that pull insights from disparate data sources will enable hypertargeting at the user level. Artificial intelligence will become more important as diverse data points accelerate. As a result, we’ll likely see the term “audience” disappear.

Just like our fingerprints, no two personalities are identical. As we head into the twilight of old-school display, the only solution moving forward is to focus on the individual – not the audience.

The Audience Model Doesn’t Account For Emotional Variation

Currently, much of ad tech is focused on discovering new audience segments. We’re consumed with connecting dozens of variables to predict and gauge user intent. The reason? Right now, it’s the scalable option.

Unfortunately, this doesn’t take into consideration how user intent is dependent on a variety of complex emotional variables. An individual may be young, affluent and interested in golf, but if they’re agitated about a suddenly tightened budget, they’re not going after that new putter you’re trying to sell.

So many emotional factors influence user intent that we fail to take into account when running campaigns. Grief, anxiety, excitement, fluster, confusion – the list goes on. Emotional variation must be understood by our technology to deliver more effective impressions.

Subscribe

AdExchanger Daily

Get our editors’ roundup delivered to your inbox every weekday.

Undoubtedly, we’ll need intelligent machinery to do the heavy lifting. Understanding and predicting what content appeals to a user at that specific point in time requires technology focused on getting to know users at an individualized level – rather than categorizing them into pre-molded audience segments.

Intelligent Data Management Fuels Hyperpersonal Experiences 

Obviously, to do this requires a heaping pile of data per user. Data management platforms (DMPs) will undoubtedly need to evolve for us to serve such hyperpersonalized campaigns, as well as widespread adaptation of universal IDs.

But the potential for bots to manage and mesh troves of user data into the right nooks and crannies is in our line of sight.

DMP giants have already aggressively responded to this demand. Salesforce’s Einstein and Oracle’s Adaptive Intelligent Apps have emitted clear signals that future data management will be smarter and more malleable. Being smarter, malleable and agile means that intelligence-powered platforms respond to cluttered or organized data in the same fashion. To top-notch AI, there is no differentiation and never too much data to handle.

Measurement: Moving Away From Quantity, Pushing For Quality

We’re finally seeing the end of times for older quantitative metrics and focal shift toward insight-rich KPIs. In a world where quality trumps quantity, it’s critical we discover how each ad impacts an individual user. Did the experience skew positive or negative? To what degree was the user influenced to make a purchasing decision? How does this compare to other campaigns viewed by this individual?

These are complex questions that require advanced answers. But the results will paint a much more holistic picture of the effectiveness of specific campaigns. Looking ahead, we need to place greater emphasis on user interaction, especially as it relates to video and native content.

Google’s launch of its time-spent metric last year proved demand for adaptive measurement is on the ascent. And while we should undoubtedly be collecting the time users spend on content, individual variation is too diverse for this metric to end up in the industry’s KPI repertoire. Hyperpersonalization requires a more spectrum-centric measurement approach, as opposed to the two-dimensional methods we use today.

When content becomes personalized, so should measurement. Luckily, just as AI-powered advertising can learn and evolve on an individual basis, so can the metrics we use to diagnose individual user experiences.

If we’re truly committed to combatting display fatigue, we need to upend the entire model on which campaigns reach and affect the end user. Personalized campaigns require personalized strategy. And when we focus on the individual, rather than the group, everyone in the audience has our attention.

Follow AdExchanger (@adexchanger) on Twitter.

Must Read

NYT’s Ad And Subscription Revenue Surge As WaPo Flails

While WaPo recently lost 250,000 subscribers due to concerns over its journalistic independence, NYT added 260,000 subscriptions in Q3 thanks largely to the popularity of its non-news offerings.

Mark Proulx, global director of media quality & responsibility, Kenvue

How Kenvue Avoided $3 Million In Wasted Media Spend

Stop thinking about brand safety verification as “insurance” – a way to avoid undesirable content – and start thinking about it as an opportunity to build positive brand associations, says Kenvue’s Mark Proulx.

Comic: Lunch Is Searched

Based On Its Q3 Earnings, Maybe AIphabet Should Just Change Its Name To AI-phabet

Google hit some impressive revenue benchmarks in Q3. But investors seemed to only have eyes for AI.

Privacy! Commerce! Connected TV! Read all about it. Subscribe to AdExchanger Newsletters

Reddit’s Ads Biz Exploded In Q3, Albeit From A Small Base

Ad revenue grew 56% YOY even without some of Reddit’s shiny new ad products, including generative AI creative tools and in-comment ads, being fully integrated into its platform.

Freestar Is Taking The ‘Baby Carrot’ Approach To Curation

Freestar adopted a new approach to curation developed by Audigent that gives buyers a priority lane to publisher inventory with higher viewability and attention scores than most open-auction inventory.

Comic: Header Bidding Rapper (Wrapper!)

IAB Tech Lab Made Moves To Acquire Prebid In 2021 – And Prebid Said No

The story of how Prebid.org came to be – and almost didn’t – is an important one for the industry.