Home Data-Driven Thinking The Fastest Path To Agentic AI In Advertising Isn’t Reinvention. It’s Using Existing Standards

The Fastest Path To Agentic AI In Advertising Isn’t Reinvention. It’s Using Existing Standards

SHARE:

We are on the brink of an exciting top-to-bottom structural transformation of our industry, with agentic AI reshaping everything from how media is discovered to how it’s planned, bought and measured.

But this transformation won’t happen instantly and without effort. 

Agentic AI needs schemas and standards to work. They provide invaluable, referenceable context, so the agents get trained to execute exactly what you asked them in natural language with repeatable accuracy. 

Which means ripping out battle-tested infrastructure and starting from scratch – as some emerging agentic protocols propose – is the slowest and most painful path you can possibly imagine. 

Why ditch existing schemas?

The open standards that have emerged for allowing AI agents to communicate with each other – Model Context Protocol (MCP) and Agent-to-Agent (A2A) – are fundamentally schema-driven. The schemas they rely on are the shared protocol that enables automation. Without them, agent-to-agent programmatic negotiation is impossible. 

The industry can take two different paths regarding the protocols that underpin agent-to-agent communication:

  1. Invent entirely new schemas in the blind hope that every stakeholder instantly agrees to adopt all of it without debate. This approach has never worked in the entire history of the universe, but, hey, maybe we’ll get lucky!
  2. Enable instant, industrywide interoperability by using existing, fully embraced schemas, standards and related taxonomies like the IAB Tech Lab’s OpenDirect, AdCOM, OpenRTB and related schemas.

I may be biased, but which path do you think is faster, safer and more predictable? 

No standards, no value

In order for agentic AI to avoid the pitfalls that have plagued programmatic’s past, we need to empower it to clean up the shortcomings of our existing ecosystem. 

Every step in a typical advertising process sheds information. The brief in a planner’s head rarely maps cleanly to the targeting options inside a DSP; the nuance of a publisher’s content gets flattened in standardized inventory feeds; performance insights often trickle back into planning too slowly to matter. 

Subscribe

AdExchanger Daily

Get our editors’ roundup delivered to your inbox every weekday.

This is where AI’s ability to reason across complex systems creates real value. It transforms fragmented, lossy workflows into ones that are clear, connected and explainable.

An agent with a deep understanding of publisher inventory, audience taxonomies and content context can match advertiser intent with opportunity far more precisely, because natural language interfaces can capture nuances that drop-down menus can’t. AI can surface connections between a brand’s customer segments and a publisher’s audience composition that would take humans weeks to discover.

But this value creation depends entirely on precise, deterministic standards.

Garbage in, garbage out

What happens when AI systems operate without deterministic grounding? They hallucinate.

What happens when agents orchestrate complex workflows across multiple systems? The hallucinations compound. Ambiguity turns catastrophic.

Audiences make no sense. Placements are misrepresented. Content is misclassified. Impression goals become budgets. Budgets become impression goals. If you want to create openings for fraud at scale, this is the perfect way to do it.

Agentic systems cannot be trusted unless they can use the shared definitions, transparent interfaces and enforceable governance that enable trust and accountability. 

Standards, in short, are everything. When an agent says “video impression with autoplay sound-off on a news site reaching adults 25-54 interested in cooking,” every term in that phrase needs to resolve to a specific, industry-agreed definition.

Which is fortunate, because every term in that phrase is an already-defined industry standard.

Think starting over is really a faster way to get value from agentic? Maybe you’re the one who’s hallucinating. 

The speed of innovation

It’s not about defending the past; it’s about speed-to-opportunity.

Using existing industry standards means tapping into compressed industry knowledge refined through billions of transactions.

AdCOM provides canonical domain objects: What is a placement? What is a video impression? What are the attributes of a device or user? 

OpenRTB handles real-time bidding with battle-tested semantics. 

OpenDirect manages programmatic guaranteed workflows for direct media buying. 

The Ad Management API standardizes creative submission and approval workflows between buyers and sellers. 

The Deals API standardizes the synchronization of deal ID metadata. 

Critically, all of these share largely the same underlying object model. A video impression means the same thing whether you’re executing a real-time bid or setting up a programmatic guaranteed deal. This semantic consistency is precisely what agents need.

The IAB Tech Lab’s Agentic road map is phased, starting with foundational capabilities and expanding as the industry builds trust in agentic workflows.

We’re starting where it will generate the most economic value across the ecosystem: helping agencies and advertisers discover publisher inventory more efficiently.

As we build trust, we’ll expand to more semi-autonomous workflows. Each one will be built on the deterministic standards that are vital to agentic systems we can trust. 

At IAB Tech Lab, our goal is the same as yours: We want agentic AI to happen fast. We’ll help the industry build interoperable, standards-compliant agents that work together.

But a fragmented ecosystem serves no one.

Data-Driven Thinking” is written by members of the media community and contains fresh ideas on the digital revolution in media.

Follow IAB Tech Lab and AdExchanger on LinkedIn.

For more articles featuring Anthony Katsur, click here.

Must Read

The IAB Formalizes Its Measurement Initiatives Under Its New ‘Project Eidos’

The IAB unveiled its Project Eidos on Monday, a new program uniting its numerous measurement initiatives under one banner.

John Gentry, CEO, OpenX

‘I Am A Lucky And Thankful Man’: Remembering OpenX CEO John ‘JG’ Gentry

To those who knew him, John “JG” Gentry wasn’t just a CEO. He was a colleague who showed up with genuine care and curiosity.

Prebid Takes Over AdCP’s Code For Creating Sell-Side AI Agents

The group that turned header bidding software into an open standard is bringing the same approach to publisher-side AI agents.

Privacy! Commerce! Connected TV! Read all about it. Subscribe to AdExchanger Newsletters
Meta logo seen on smartphone and AI letters on the background. Concept for Meta Facebook Artificial Intelligence. Stafford, UK, May 2, 2023

Meta Bets That Its Ad Machine Can Fund Its AI Dreams

Meta is channeling its booming ad revenue into a $135 billion AI drive to power its “personal superintelligence” future.

Comic: Header Bidding Rapper (Wrapper!)

Microsoft To Stop Caching Prebid Video Files, Leaving Publishers With A Major Ad Serving Problem

Most publishers have no idea that a major part of their video ad delivery will stop working on April 30, shortly after Microsoft shuts down the Xandr DSP.

AdExchanger's Big Story podcast with journalistic insights on advertising, marketing and ad tech

Guess Its AdsGPT Now?

Ads were going to be a “last resort” for ChatGPT, OpenAI CEO Sam Altman promised two years ago. Now, they’re finally here. Omnicom Digital CEO Jonathan Nelson joins the AdExchanger editorial team to talk through what comes next.