Home Data-Driven Thinking Who Will Survive The Machine-Learning Revolution?

Who Will Survive The Machine-Learning Revolution?

SHARE:

Data-Driven Thinking” is written by members of the media community and contains fresh ideas on the digital revolution in media.

Today’s column is written by Rémi Lemonnier, co-founder at Scibids.

Machine learning (ML) is a very trendy term, raising huge expectations on one end and creating fantastic fears on the other.

Even if there is a lot of “ML-washing” among the ad tech industry, there is no doubt that it is and will continue reshaping the digital advertising ecosystem. A recent ​Juniper Research study predicted machine-learning algorithms would generate some $42 billion in annual ad spend by 2021, up from an estimated $3.5 billion in 2016.

Following the steps of quantitative finance, real-time bidding is transitioning from a manual data analysis domain to a purely mathematical one. I am not referring to single cost-per-click or cost-per-action optimization at the campaign level, but holistic solutions that will take into account multiple KPIs and media plan constraints for a given advertiser.

Add on top of that first-price auctions, header bidding and generalization of complex multitouch attribution models and we have the germs of a revolution. Here’s how to avoid becoming the next Marie Antoinette.

If you are a publisher, ​you will need to be selected for each campaign by the impartial algorithm – there will be no more guaranteed seats in the acquisition whitelist. Publishers that invest in impactful and viewable ad slots and enrich their bid requests with highly relevant data will concentrate the money flow, while others will see their revenues decrease. Anti-fraud algorithms will become more sophisticated, and black-hat players will get chopped off all major platforms.

If you are a data provider​, be prepared: Hand-picking data segments and targeting them in dedicated tactics will become obsolete. Each advertiser will have hundreds of data segments to choose from, and the algorithm will automatically define the value for each segment depending on the context.

Since algorithms will seamlessly reason in terms of total amount (media plus data) they can pay for an impression, data will have to be priced very carefully. Using ML to capture true real-time intent will be essential to thrive in this environment. Data providers struggling to demonstrate that their segments are significantly correlated to conversions will face serious difficulties.

If you are a trading desk, ​you will have to learn how to speak fluently to the algorithm to best translate your client needs in this new language. Only by understanding what is going on under the hood will you be able to guide the algorithm toward true performance. Forget, for instance, the long hours spent to manually blacklist the underperforming domains or geolocations; the algorithms will be much better than any human at identifying them.

Worse, those monovariable analyses will suboptimally reduce the number of available contexts. For instance, in the context of manual trading it is usually a good decision to stop campaigns between midnight and 6 a.m. But in an algo trading setting, that would degrade the overall performance by excluding the few night shoppers the algo would have been able to identify. Those who hang on manual bid optimization or don’t acquire a deep understanding of their new tools will ultimately lose a lot of budget.

Subscribe

AdExchanger Daily

Get our editors’ roundup delivered to your inbox every weekday.

All of this is a fundamentally good news for the industry, since advertisers will get more for their buck, which will translate into increased budget for programmatic players.

Follow AdExchanger (@adexchanger) on Twitter.

Must Read

The Arena Group's Stephanie Mazzamaro (left) chats with ad tech consultant Addy Atienza at AdMonsters' Sell Side Summit Austin.

For Publishers, AI Gives Monetizable Data Insight But Takes Away Traffic

Traffic-starved publishers are hopeful that their long-undervalued audience data will fuel advertising’s automated future – if only they can finally wrest control of the industry narrative away from ad tech middlemen.

Q3: The Trade Desk Delivers On Financials, But Is Its Vision Fact Or Fantasy?

The Trade Desk posted solid Q3 results on Thursday, with $739 million in revenue, up 18% year over year. But the main narrative for TTD this year is less about the numbers and more about optics and competitive dynamics.

Comic: He Sees You When You're Streaming

IP Address Match Rates Are a Joke – And It’s No Laughing Matter

According to a new report, IP-to-email matches are accurate just 16% of the time on average, while IP-to-postal matches are accurate only 13% of the time. (Oof.)

Privacy! Commerce! Connected TV! Read all about it. Subscribe to AdExchanger Newsletters
Comic: Gamechanger (Google lost the DOJ's search antitrust case)

The DOJ And Google Sharpen Their Remedy Proposals As The Two Sides Prepare For Closing Arguments

The phrase “caution is key” has become a totem of the new age in US antitrust regulation. It was cited this week by both the DOJ and Google in support of opposing views on a possible divestiture of Google’s sell-side ad exchange.

create a network of points with nodes and connections, plain white background; use variations of green and grey for the dots and the connctions; 85% empty space

Alt Identity Provider ID5 Buys TrueData, Marking Its First-Ever Acquisition

ID5 bought TrueData mainly to tackle what ID5 CEO Mathieu Roche calls the “massive fragmentation” of digital identity, which is a problem on the user side and the provider side.

CTV Manufacturers Have A New Tool For Catching Spoofed Devices

The IAB Tech Lab’s new device attestation feature for its Open Measurement SDK provides a scaled way for original device manufacturers to confirm that ad impressions are associated with real devices.